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In the last decades differential equations involving fractional derivatives and integrals 
have been studied by many researchers. Due to their ability to model more adequately 
some phenomena, fractional partial differential equations have been used in numerous 
areas such as finance, hydrology, porous media, engineering and control systems, etc. 
Numerical schemes based on rotated finite difference approximation have been proven 
to work well in solving standard diffusion equations. However, the formulation of these 
strategies on time fractional diffusion counterpart is still at its infancy. A well-designed 
preconditioning for these types of problems reduces the number of iterations to reach 
convergence. In this research work, we have derived new preconditioned fractional 
rotated finite difference method for solving 2D time-fractional diffusion equation. 
Numerical experiments are conducted to examine the effectiveness of the proposed 
method. 
 

Contribution/ Originality: This study contributes in the existing literature about the foundation of fast 

iterative schemes from the preconditioned methods for solving the time-fractional diffusion equation. It is one of the 

few studies which combine a suitable pre-conditioner matrix with the rotated iterative scheme as a way to further 

improve the convergence rate of the method in solving the 2D time-fractional diffusion equation. 

 

1. INTRODUCTION 

The importance of this study lies in the various applications of fractional partial differential equations (FPDE's) 

in finance, physics, image processing and engineering [1, 2].  It is well known that FPDE's is a generalized of the 

classical partial differential equations (PDE's). As a result of that there is no general method that can be used in 

solving FPDE's same as classical PDE's. Approximation methods such as finite difference methods have played 

important role for solving FPDE's in the last few years [3, 4]. It is noteworthy to observe that the finite difference 

schemes derived from skewed (rotated) difference operators have been extensively investigated over the years for 

solving FPDE's. These iterative methods have been shown to be much faster than the methods based on the 

standard five-point formula which is due to the formers’ overall lower computational complexities (Saeed and Ali 

[5]; Ali and Saeed [6]; Saeed and Ali [7]. In Saeed [8] the preconditioned rotated finite difference method applied 

successfully for solving fractional elliptic partial differential equations and the reveal results was very encouraging. 
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This work involves an investigation on the utilization of the new preconditioned fractional rotated finite 

difference method for solving 2D Time-Fractional Diffusion Equations. An outline of this paper is as follows. In 

Section 2, the proposed accelerated version of fractional rotated five point’s approximation method will be 

formulated. The numerical results will be presented to show the efficiency of the new proposed methods in Section 

3. Finally, Conclusion and Future work are given in Section 4. 

 

2.  FORMULATION OF THE PROPOSED PRECONDITIONED ITERATIVE METHOD 

Consider the following time fractional diffusion equation 

2 2
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where  is the order of the time fractional derivative in Caputo sense which is defined as Zhang and Sun [9]. 
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Suppose that the domains are constant for both x and y , while the grid dimensions in relation to space and 

time for the positive integers n and l  are respectively represented by 
1

h
n

 and T

l
 . The grid points in the 

space interval[0,1] are denoted , , { , 0,1,..., }  i jx ih x jh i j n and the grid points for time are designated 

, 0,1,..., .kt k k l    Discretization with regard to time fractional with utilization of Crank-Nicolson finite difference 

approximations at 
1/2( , , )i j nx y t 

is realized through the formula displayed below [10] 
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utilization of the standard second order Crank-Nicolson difference scheme with the formula (3) for finite difference 

discretization of (1) will result in the standard Crank-Nicolson formula portrayed below 
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where    1 * 1 10
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It can be observed that for the rotated five-point finite difference approximation the following transformations 

take place 

1 1 1i , j i , j     

1 1 1i , j i , j    

2h h.  
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Therefore, this approximation method (achieved through 450 degree clockwise rotation of the x-y axis) for 

equation (1) can be written as the following: 

1 1 1 1 1

, 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

11
1 * 1 * * 1 * 0 2

1 , 1 , , 0 ,
1

1
{ [( ) ( )]

1 4

(1 2 ) 2 ( ) 2 ,

    

               


  

  


       


      

k k k k k k k k k

i j i j i j i j i j i j i j i j i j

kk
k s

i j k s k s i j k i j i j
s

r
u u u u u u u u u

r

w r u w w u w u m f
                (5) 

wher  0 ,m r and 
*

sw  as mentioned before in (4). 

Several preconditioned strategies have been used for improving the convergence rate of the iterative methods 

derived from the standard and skewed (rotated) finite difference operators [11-14]. The difficulty lays in construct 

the suitable preconditioners which transform the resulted system of iterative method to new preconditioned system. 

This new preconditioned system has same exact solution but has more favorable spectral properties. 

Usually the resulted system from equation (5) is large and the coefficient matrix A is sparse. Therefore, matrix 

A  can be write as 

A D L U                                                                          (6) 

where D is diagonal matrix  A, L is strictly lower triangular part of A and U is strictly upper triangular part of 

A. 

       In Saeed [15] the preconditioned fractional rotated finite difference method was successfully applied to solve 

2D time-fractional diffusion equation by using the preconditioned matrix 
1 ( ) P I kU which modify the 

original system resulted from fractional rotated finite difference method into new system that is equivalent in the 

sense that it has the same solution, but that has more favorable spectral properties. However, the iteration count for 

the preconditioned system decreased about only 23-30% compared to the original system.  

Inspired by the works above, we derive new preconditioned fractional rotated finite difference system by using the 

preconditioned matrix
 2 ( ) P I kL  

where 0 1.5 k  .  In the following section, we will show that the iteration 

count for the proposed preconditioned system decreased about 30-50% compared to the original system which yield 

very encouraging results.  

 

 

3. NUMERICAL RESULTS 

In this section, we present numerical results for the proposed method applied to two particular examples. The 

first problem as the following [16]:  

2 2
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where the solution domain is {( , ) :0 1, 0 1},    x y x y  with Dirichlet boundary requistes which comply 

with the exact solution 1( , , ) .  x yu x y t e t 

 
Ultimately, a Gauss-Sidel method holding a relaxation value 

equivalent to 1 was applied on a variety of grid dimensions (4, 8,16, 20 and 24) with varying time steps 

1 1 1 1 1
( , , , , )
4 8 16 20 24

 for 0 1 t  . Preconditioned methods were deemed efficient through investigations which 

revealed their superiority in the context of execution time (measured in seconds), number of iterations (Ite) and 

maximum absolute error (Max) with tolerance 610 .  
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Table-1. Comparison of the number of iterations, Execution time and maximum error for 0.25   

Problem (1) 
t  n  Method Time iterations Max Error 

1

4
 4  

FRFD 0.0148 8 7.36E-3 

P1FRFD 0.0139 7 7.35E-3 
P2FRFD 0.0137 6 7.34E-3 

1

8
  

8 

FRFD 0.5910 26 2.13E-3 

P1FRFD 0.5781 20 2.13E-3 

P2FRFD 0.5660 18 2.11E-3 

1

16
 16 

FRFD 4.8145 46 8.04E-3 
P1FRFD 4.7324 38 8.21E-3 
P2FRFD 4.5231 33 8.031E-3 

1

20
 20 

FRFD  224.014 72 7.36E-4 
P1FRFD 223.832 58 6.22E-4 
P2FRFD 215.071 49 6.19E-4 

1

24
 24 

FRFD  244.492 134 2.08E-4 
P1FRFD 202.012 104 1.28E-4 
P2FRFD 183.615 88 1.24E-4 

                        Source: software results 

  

Table-2. Comparison of the number of iterations, Execution time and maximum error for 0.75  

Problem (1) 
t  n  Method Time iterations Max Error 

1

4
 4  

FRFD 0.0136 8 3.36E-3 
P1FRFD 0.0136 7 3.33E-3 

P2FRFD 0.0131 6 3.32E-3 

1

8
 8 

FRFD 0. 5237 22 1.41E-3 

P1FRFD 0.4301 18 1.48E-3 

P2FRFD 0.4291 16 1.47E-3 

1

16
 16 

FRFD 3.8211 34 5.22E-4 
P1FRFD 3.1731 29 4.71E-4 
P2FRFD 3.0211 26 4.68E-4 

1

20
 20 

FRFD 128.231 72 3.76E-4 
P1FRFD 102.038 51 2.61E-4 
P2FRFD 100.121 48 2.57E-4 

1

24
 24 

FRFD 142.091 84 3.15E-3 
P1FRFD 123.512 67 2.12E-3 
P2FRFD 111.217 53 2.08E-3 

                       Source: software results 

 

The attainment of a solution to an additional test problem (2) [9] substantiates the efficiency of these 

procedures: 

2 2
2 2

2 2
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with initial and boundary conditions: 

.

 

2 2

( , ,0) 0, (0, , ) 0, ( ,0, ) 0

(1, , ) sin(1)sin( ), ( ,1, ) sin( )sin(1),

0 1, 0 , 1.

  

 

   

u x y u y t u x t

u y t t y u x t t x

t x y  

The exact solution is 
2( , , ) sin( )sin( )u x y t t x y . 

Numerical data of the original FRFD and the preconditioned systems P1FRDF & P2FRDF are summarized in 

tables (1) , (2), (3) and (4) for problems (1) and (2) with 0.25  and 0.75  respectively. 
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Table-3. Comparison of the number of iterations, Execution time and maximum error for 0.25  

Problem (2) 
t  n  Method Time iterations Max Error 

1

4
 4  

FRFD 0.0132 6 4.81E-4 

P1FRFD 0.0132 6 4.81E-4 
P2FRFD 0.0124 5 4.76E-4 

1

8
  

8 

FRFD  0.3682 21 1.22E 

P1FRFD 0.3221 16 1.22E 

P2FRFD 0.2972 12 1.18E 

1

16
 16 

FRFD 3.1051 37 2.09E-5 
P1FRFD 2.8626 23 2.38E-5 
P2FRFD 2.4224 17 2.36E-5 

1

20
 20 

FRFD 98.015 70 2.67E-5 
P1FRFD 82.341 50 2.39E-5 
P2FRFD 62.994 35 2.37E-5 

 
1

24
 

24 

FRFD 143.018 90 5.01E-5 
P1FRFD 96.878 65 4.83E-5 

P2FRFD 74.631 43 4.29E-5 

                       Source: software results 
 

Table-4. Comparison of the number of iterations, Execution time and maximum error for 0.75  
Problem (2) 

t  n  Method Time iterations Max Error 

1

4
 4  

FRFD 0.0135 7 1.98E-4 

P1FRFD 0.0135 6 1.98E-4 

P2FRFD 0.0102 5 1.83E-4 

1

8
  

8 

FRFD 0.3613 18 1.26E-4 

P1FRFD 0.2851 14 1.14E-4 
P2FRFD 0.2237 10 1.12E-4 

1

16
 16 

FRFD 2.5064 33 1.05E-4 
P1FRFD 2.0051 25 1.03E-4 

P2FRFD 1.6628 18 1.01E-4 

1

20
 20 

FRFD 87.411 52 1.31E-4 

P1FRFD 66.725 38 1.28E-4 

P2FRFD 42.725 22 1.26E-4 

1

24
 24 

FRFD 117.318 74 1.82E-4 

P1FRFD 98.702 58 1.61E-4 
P2FRFD 76.314 34 1.49E-4 

                      Source: software results 

 

4   CONCLUSION AND FUTURE WORK 

In this study, we have introduced new preconditioned iterative methods based on fractional rotated finite 

difference method for solving 2D time-fractional diffusion equation. From observation of all experimental results, it 

can be conclude that the proposed P2FRFD method requires less time and iterations number when compared to 

FRFD and P1FRFD methods with same levels of precision. Therefore, the proposed scheme P2FRFD may be a 

good alternative to solve this type of equations and many other numerical problems.  Numerical results strongly 

suggest that the efficiency of the proposed preconditioning methods. The convergence analysis of the present 

iterative method regarding solutions for 2D time-fractional diffusion equation is currently under study. 

Furthermore, the idea of this proposed method can be extended to group iterative solver which will be reported 

separately in the future. 
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