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ABSTRACT

Agriculture faces significant risks from plant diseases and venomous insects,
highlighting the crucial need for swift detection and diagnosis of these disorders.
Continuous advancements in deep learning (DL) techniques have significantly facilitated
the identification of plant leaf diseases, providing accurate and powerful tools. The
accuracy of DL methods heavily depends on the quality and quantity of labeled samples
used during training. This article introduces Tomato leaf disease detection using a
Parallel Deep Convolutional Neural Network (TPDCNN) for plant leaf disease detection
(PLDD). Additionally, it presents the use of a Conditional Generative Adversarial Neural
Network (C-GAN) for generating artificial data to address the issue of limited data
availability caused by imbalanced dataset sizes. Experimental results are conducted using

Precision agriculture the PlantVillage dataset (tomato plants), focusing on two-, six-, and ten-class PLDD.

Tomato. The effectiveness of the TPDCNN model is evaluated through various performance
measures, including accuracy, recall, precision, and F1-score, and compared against
traditional state-of-the-art approaches used for detecting tomato plant leaf diseases. The
proposed system outperforms existing methods, achieving superior accuracy rates
(99.14% for 2-class, 99.05% for 6-class, 98.11% for 10-class PLDD) for tomato PLDD.
The TPDCNN method is well-suited for real-time deployment on standalone devices
with limited computational resources due to its simpler structure and fewer trainable
parameters.

Contribution/ Originality: Using a conditional GAN and a parallel CNN, this study suggests a unique approach
for detecting tomato leaf disease. While the C-GAN creates artificial samples to reduce class imbalance, the parallel
CNN enhances feature extraction, providing a lightweight, effective deep-learning architecture suitable for real-time,

resource-constrained deployment.

1. INTRODUCTION

In today's world, agricultural land serves a greater purpose than just being a source of food. Plants and fruits are
essential energy sources for both humans and animals, with plant leaves playing a crucial role in photosynthesis and
overall plant growth. Plant leaves also possess medicinal properties that benefit humans. Agriculture plays a vital
role in Asian and African countries, providing food, shelter, medicine, and employment for over half of their
populations. However, diseases pose a significant threat to agricultural crops, resulting in reduced quality and
quantity of products [1, 27].

Plant diseases can be classified as parasitic or non-parasitic. Parasitic diseases are caused by pathogens such as

bacteria, viruses, fungi, and chromista, as well as pests like mites, slugs, animals, and rodents, and weeds such as
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dicots and monocots. Conversely, non-parasitic plant diseases can occur due to factors like water excess or shortage,
temperature fluctuations, irradiation, mineral imbalances, and nutrient deficiencies. The Indian economy heavily
relies on agricultural yield, making PLDD a crucial aspect of agriculture. Therefore, adopting automatic disease
detection technology for early PLDD is beneficial [3-57.

The conservative method of detecting plant diseases relies on expert macroscopic examination, which is a labor-
intensive and costly process, requiring a large group of specialists and continuous observations [67]. In some cases,
farmers in certain countries lack access to appropriate facilities and experts, making it challenging to seek advice due
to high costs and time constraints. In such situations, the proposed techniques prove advantageous for monitoring
large-scale agricultural areas. By focusing solely on the symptoms exhibited by plant leaves, automatic detection of
illnesses becomes easier, cheaper, and assists in image processing-based automatic inspection, process monitoring,
process control, and remote robotic guidance through machine vision [7, 87.

Tomatoes are a widely consumed and nutritious crop, with an annual global consumption of approximately 160
million tonnes. Apart from their nutritional value, tomatoes possess medicinal properties that can be used to treat
gingivitis, hypertension, and hepatitis. Tomatoes are predominantly grown by small farmers and significantly
contribute to the agriculture industry. However, tomato crops are susceptible to diseases and pests, which can lead
to a decrease in production by 30 to 50 percent. Manual leaf disease diagnosis methods require specialized expertise
and are time-consuming and laborious.

They often lack accuracy and effectiveness due to factors such as stress, fatigue, and subjective interpretation of
illnesses. To overcome these challenges, deep learning (DL) and machine learning (ML) techniques based on image
processing are commonly employed for leaf disease identification [9-117.

Deep neural networks, a significant improvement over traditional neural networks, have proven to be highly
effective in various computer vision applications. These networks consist of stacked layers of nodes, and by adjusting
their settings, the effectiveness of DL algorithms can be enhanced. However, the effectiveness of DL models is
influenced by the size of the database used for training. Traditional color, texture, and shape attributes may not
provide sufficient feature representation, leading to the misclassification of diseases due to a lack of distinguishing
characteristics [12, 137].

Previous approaches to defect identification may not be universally applicable for detecting various types of
illnesses. Additionally, many deep learning architectures with higher hyperparameters may offer less flexibility when
operating in real-time scenarios with limited computing resources. Class imbalance issues arise when training samples
are unevenly distributed, resulting in higher accuracy for the disease class with larger training data compared to the
class with fewer data [14, 157].

This research paper introduces a PLDD system based on a lightweight TPDCNN to improve the connectivity
of plant leaf images. The proposed PLDD scheme is validated using the Tomato plant dataset from PlantVillage. The
key contributions of this research paper are as follows.

e Implementation of a tomato PLDD system based on TPDCNN for superior discriminative feature
representation of tomato leaves, leading to accurate PLDD and reduced computational complexity of the DL
framework.

e Evaluation of TPDCNN’s performance using artificial data generated by GAN to address the issue of data
scarcity resulting from imbalanced datasets.

e Performance assessment of the proposed scheme for 3, 6, and 10-class PLDD, based on metrics such as
accuracy, recall, precision, and I'1-score.

The remaining article is organized as follows: Section 2 provides a review of the relevant literature on PLDD
using ML and DL. Section 8 presents the dataset details and methods required for implementing the proposed
TPDCNN-based PLDD scheme. Section 4 emphasizes the experimental results and discussions. Finally, Section 5

concludes the article and suggests avenues for future improvements.
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2. RELATED WORK

In the field of agriculture, disease identification plays a crucial role. DL-based techniques have gained significant
attention in recent years for tomato PLDD due to their high feature discrimination, generalization capability, and
ability to handle large datasets.

Adhikari et al. [16] utilized the YOLO architecture to classify tomato PLDD into three classes, achieving an
accuracy of 76.00%. However, the complex architecture and larger trainable parameters (27.6M) make it difficult to
deploy on standalone devices. Karthik et al. [17] presented two CNN architectures based on residual learning along
with an attention scheme.

Their results indicated that the CNN with the attention scheme outperformed residual learning, achieving an
accuracy of 98%. Durmusg et al. (18] investigated the performance of AlexNet and SqueezeNet for classifying 10
different tomato diseases, with SqueezeNet achieving an accuracy of 93% and AlexNet achieving 95.65%. Elhassouny
and Smarandache [197 developed a mobile application based on MobileNet for detecting nine classes of tomato leaf
diseases. Their model, trained on 7176 tomato plant images from the PlantVillage dataset, achieved 90.30% accuracy.
Widiyanto et al. [207] employed a CNN model for PLDD, focusing on diseases such as Septoria leaf spot, curl virus,
yellow leaf, late blight, mosaic virus, and healthy leaves, resulting in an accuracy of 96.60% with a dataset of 1000
samples per class.

Agarwal et al. [217] proposed a CNN-based framework (ToLeD) for tomato PLDD, achieving an accuracy of
91.20% for 10-class classification. Their model demonstrated superiority over traditional approaches such as VGGNet
(77.20%), MobileNet (63.75%), and Inception V3 (63.40%). The proposed lightweight cascaded architecture,
consisting of three convolutional and maximum pooling layers, helped reduce the number of trainable parameters and
storage space.

However, the accuracy varied for different diseases due to class imbalance issues. Zhang et al. [227] explored pre-
trained networks such as AlexNet, ResNet, and GoogleNet for tomato PLDD. The ResNet model, combined with
SGD optimization, yielded better results compared to AlexNet and GoogleNet, highlighting the importance of hyper-
parameter tuning.

Abbas et al. [237] explored Conditional GAN (C-GAN) for generating artificial images to address data scarcity
and overfitting issues. Their DenseNet121-based PLDD achieved accuracies of 99.51% for 5-class, 98.65% for 7-class,
and 97.11% for 10-class PLDD. Fuentes et al. [247] employed Faster R-CNN for leaf disease detection and
localization, achieving an accuracy of 85.00% for a 9-class classification using ResNet50 and VGG-16 features.

DL architectures based on CNNs have gained widespread acceptance in various computer vision systems. Several
DL and transfer learning (TL)-based PLDD systems have been proposed in recent years. Mohanty et al. [25]
proposed AlexNet and GoogleNet for 28-class PLDD, achieving accuracies of 99.34% and 99.27% for GoogleNet and
AlexNet, respectively.

Sladojevic et al. [267] investigated a fine-tuned CNN for PLDD across 18 different plants. The method resulted
in 96.80% accuracy for 18-class PLDD. Ramcharan et al. [27] proposed TL based on GoogleNet (InceptionV3) for
detecting pest damage and diseases in cassava plants. Prajwala et al. [287 introduced a DCNN for tomato PLDD,
achieving an accuracy of 94.85% for a 10-class disease detection task. Their approach utilized low-resolution images
(60x60 pixels) to create a lighter DCNN architecture.

However, this approach may have limitations when handling larger real-time high-resolution images. Nazki et
al. [297] employed an AR-GAN network for data augmentation and a CNN for tomato PLDD, achieving 86.10%
accuracy for nine classes using the Cityscapes dataset. They also utilized CycleGAN with U-net for data augmentation
to address data scarcity, but noted that the complexity of CycleGAN with U-net might limit implementation on
standalone systems. Badiger and Mathew [307] presented a hybrid deep learning framework for tomato plant leaf
disease segmentation and multiclass classification. They used a deep batch-normalized ELU AlexNet (DbneAlexNet)
model enhanced with Gradient-Golden Search Optimization for U-Net segmentation and Gradient Jaya-Golden
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Search Optimization for classification. This unified segmentation and classification approach achieved a high accuracy
of 92.4%, with superior TPR, TNR, and low FPR, demonstrating its effectiveness for early and accurate tomato
disease detection. In recent years, advanced deep learning frameworks have been deployed for disease detection in
tomato plants. Yulita et al. [317] proposed a DenseNet-based deep learning model for tomato plant leaf disease
detection implemented in a mobile application. By optimizing hyperparameters and using two hidden layers with a
dropout rate of 0.4, they achieved 95.7% accuracy and a 95.4% F1-score under 10-fold cross-validation, highlighting
the feasibility of smartphone-based real-time tomato disease monitoring. Tang et al. (327 developed PLPNet, a
precise image-based tomato leaf disease detection method.

They introduced a perceptual adaptive convolution module, a location reinforcement attention mechanism, and
a proximity feature aggregation network to address issues such as soil background interference and interclass
similarity. PLPNet achieved 94.5% mAP50, outperforming common detectors and providing a robust tool for modern
tomato cultivation. Ahmed et al. [3387] focused on prompt detection of tomato leaf diseases using a hybrid transfer
learning approach. By combining transfer learning with conventional machine learning, they developed the XSVC
model, which classified nine diseases and healthy leaves with 99.51% accuracy on 60,000 images. They also created
an Android app for real-time disease prediction, advancing automated tomato disease diagnosis.

Billah et al. (847 proposed a neural network approach for identifying five major tomato leaf diseases, including
bacterial and viral infections. Using color, shape, and texture features extracted from segmented images, their method
achieved nearly 99% classification accuracy, emphasizing the need for adaptable algorithms and customized strategies
for precision in leaf disease identification. Kaur et al. [357] examined the performance of segmentation models for
detecting tomato leaf diseases, assembling a hybrid deep segmentation CNN (DSCNN) model from U-Net and Seg-
Net pre-trained networks with instance segmentation. This hybrid approach improved detection of single and
multiple leaf diseases and outperformed other modified U-Net and Seg-Net models in accuracy, precision, recall, IoU,
and mloU, demonstrating its efficiency for large-scale segmentation tasks. Wang and Liu [36] introduced
TomatoDet, a novel model for detecting four common tomato diseases and healthy leaves in complex backgrounds.
They integrated Swin-DDETR’s self-attention mechanism, the Meta-ACON activation function, and an improved
bidirectional weighted feature pyramid network (IBiFPN) to enhance small-target localization and reduce false
positives and negatives. Their model achieved 92.3% mAP and 46.6 IF'PS, marking a significant improvement over
baselines in real-world conditions. Sun et al. [87] proposed an advanced tomato disease recognition system based on
the exponential moving average and data-efficient transformer (EMA-DeiT) model, which combines the data-efficient
image transformer with exponential moving average and self-distillation strategies. Their system achieved 99.6%
accuracy on the PlantVillage dataset and over 97% on multiple external datasets, demonstrating strong
generalization and practical value for precision agriculture. DL frameworks have demonstrated significant
improvements in PLDD effectiveness compared to traditional ML algorithms. However, challenges still exist due to
aspects such as tedious hyperparameter tuning, complexity in architecture, large numbers of trainable parameters,

longer training and recognition times, and overfitting issues for diseases with fewer instances [38-407.

3. MATERIAL AND METHODOLOGY
3.1. Dataset

In this work, tomato leaf images were obtained from the PlantVillage dataset. The dataset comprises a total of
10 classes, including one normal class and nine disease classes: early blight, bacterial spot, septoria leaf spot, late
blight mold, leaf mold, mosaic virus, target spot, yellow leaf curl virus, and spider mite. These disease classes can be
categorized into five categories: bacterial, viral, mold, fungal, and mite diseases [417]. Figure 1 illustrates sample
images of the tomato plant, while Table 1 provides comprehensive information about the disease types and the total
number of images in the dataset. Among the disease classes, curl virus disease has the highest number of images

(3209), while mosaic virus disease includes only 3873 images. The augmented dataset consists of 3500 samples per
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class. For the training and testing of the models, 70% of the total dataset was allocated for training, and the remaining

30% was used for testing purposes.

a Health|

f)  Bacterial spot

g)Late blight mold  h) Spider mite

Table 1. Database information (Tomato Plant-PlantVillage dataset).

d) Target spot

1) Mosaic virus
Figure 1. Samples of the tomato plant from the PlantVillage dataset.

e) Septoria leaf spot

1) Curl virus

Disease Healthy Viral Fungal Bacterial | Mold | Mite | Total
group
Disease Healthy | Curl | Mosaic | Early | Septoria | Target | Leaf | Bacterial | Late | Spider
type virus | virus | blight leaf spot | mold spot blight | mite

spot mold
Original 1591 3209 373 1000 1771 1404 952 2127 1909 1676 | 16012
Samples
Augmented 3500 3500 3500 3500 3500 3500 3500 3500 3500 3500 35000
Samples

3.2. Data Pre-Processing and Data Augmentation

To ensure simplicity and consistency, the images from the Plant Village dataset were resized to 256x256x3

dimensions. Data augmentation was performed using a C-GAN to address the issue of overfitting resulting from data

imbalance, as given in Figure 2. The C-GAN consists of both a generator and a discriminator model. The generator's

objective is to generate artificial samples, while the discriminator's role is to distinguish between synthetic and real

samples.
Input Layer] [ PRL ] [ TCL(512 ] [BN Layer ] [ RelU ]
Real/Fake [ (256x256) filters) Layer
Leaf > —
Images Discriminator TCL (128 RelU TCL (256
BN Layer filters) Layer BN Layer filters)
GAN Loss
RelLU TCL (64 RelU
[ Layer ] [ filters) ] [ BN Layer ] [ Layer ] [ TCL ]
Generated
»| Generator Fake Generator Network
Noise —p Samples ol E L L E B X —a E A KX X X X 2 X X XX B % R
CL (512 Leaky RelLU CL (256
[ Input Layer ] [ filters) ] [ Layer ] [ filters)
Data Augmentation using Attention-based GAN
CL (64 Leaky ReLU CL (128
[ fitters) ] [ Layer ] [ filters) ] [Leaky ReLU]
Leaky RelLU . Softmax Real/Fake
[ Layer ] [ cLa Flller)] [ Classifier ] [ Detection ]

Discriminator Network

Figure 2. Framework of C-GAN model for data augmentation.
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The generator model of C-GAN comprises an input layer, a dense layer, an embedding layer, a leaky ReL.U layer,
a reshape layer, a concatenate layer, and four convolutional layers, with each layer followed by a leaky ReLU
activation. Conversely, the C-GAN discriminator model consists of an input layer, an embedding layer, a dense layer,
a reshape layer, a concatenate layer, four convolutional layers followed by leaky ReLU layers, a flattening layer, and
a dropout layer.

The generator model (G) generates synthetic images using random noise and latent points, while the
discriminator model (D) differentiates between real and fake samples produced by the generator model [23, 427. The
generator model, denoted as G, receives input noise and latent points distributed as n,(z).. On the other hand, the
discriminator model, denoted as D, is provided with image samples and class labels y. The objective of the
discriminator model is to improve the probability of correctly assigning class labels to both original and synthetic
images, expressed as logD (im|y).

Meanwhile, the generator model aims to minimize the generator loss, which is defined as log (1 — D (G(zly)).

The overall objective function of the C-GAN, following a min-max approach, is presented in Equation 1.

mGin mglx(G,D) = Eimpgaramy [0gD (im|y)] + E,_p, »[log (1 — D(G(zly))] (1)

3.3. Network Model

The proposed TPDCNN is composed of four parallel DCNN structures, with each arm utilizing different filter
dimensions: 8x3, 5x5, 7x7, and 9x9, as given in Figure 3. The use of different filter sizes allows the network to
capture both fine and coarse textural information from the leaf images.

Each DCNN arm consists of three 2D convolutional layers (Conv-2D), three rectified linear unit (ReLU) layers,
and three maximum pooling layers (MaxPool). After the third MaxPool layer, the resulting feature maps are flattened
to convert the multi-dimensional representations into a one-dimensional vector. These flattened features from all four
arms are then concatenated and passed to a fully connected layer. In the final layer, a softmax classifier based on
probability is employed for classification.

The convolutional layer plays a vital role in capturing the correlation and connectivity between local regions on
the plant leaf surface. It describes discriminative attributes such as texture, edges, surface properties, and shape of the
plant leaf. In this layer, the input leaf image is convolved with various convolutional filters, generating feature maps
that represent distinctive characteristics of the leaf. The ReLU layer applies an activation function that sets all
negative values from the convolutional layer output to zero, while preserving non-negative values. This ReLU
activation function helps alleviate the vanishing gradient problem, making the CNN features more effective and
efficient for training.

It introduces non-linearity to the data, which is easier to optimize. The maximum pooling layer selects the
maximum value within a pooling window, enabling the extraction of salient information from the leaf crops and

reducing the dimensionality of the feature maps [ 30, 43-457].
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Figure 3. Network architecture of the proposed system.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS
The proposed system was implemented on an Nvidia GPU with 512 tensor cores and 16 GB RAM.

4.1. Performance Evaluation for 10-Class PLDD

Figure 4 presents the results of the proposed TPDCNN model for the 10-class classification of tomato PLDD.
‘When trained on the original dataset, the proposed model achieves higher accuracy for the curl virus (99.58%), healthy
(98.74%), and late blight mold (98.60%) classes. However, it exhibits lower disease detection accuracy for the mosaic
virus (88.39%) and leaf mold (91.96%) diseases due to the lower number of training samples, which leads to class

imbalance issues. For the healthy class, both models achieved identical results with an accuracy of 98.74%, precision
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of 0.98, recall of 0.99, and an F1-score of 0.98, indicating strong performance even without CGAN. Similarly, for the
curl virus class, TPDCNN-CGAN slightly improved over TPDCNN, maintaining an accuracy of 99.58%, but
increasing precision to 0.99 compared to 0.97 in TPDCNN, while recall remained perfect at 1.00, producing a higher
F1-score of 0.99 compared to 0.98. The mosaic virus class shows the most significant improvement after adding
CGAN. TPDCNN's accuracy of 88.39% rises to 96.43% with TPDCNN-CGAN. Precision improves from 0.89 to
0.92, recall from 0.88 to 0.96, and F1-score from 0.89 to 0.94, reflecting better generalization and class differentiation.
Likewise, for early blight, TPDCNN’s metrics (accuracy 94%, precision 0.97, recall 0.94, F1-score 0.95) increased to
97% across all metrics in TPDCNN-CGAN, indicating more stable detection. For the septoria leaf spot class,
TPDCNN achieved 96.99% accuracy, which improved to 98.49% with TPDCNN-CGAN. The precision rose from
0.98 t0 0.99, recall from 0.97 to 0.98, and F 1-score from 0.98 to 0.99. Similarly, for target spot, the accuracy increased
from 97.62% to 98.10%, with precision rising from 0.96 to 0.99, and F1-score from 0.97 to 0.99. These increments
show how CGAN enhances robustness in mid-performing classes. The leaf mold class also benefited significantly,
where TPDCNN accuracy of 91.96% improved to 96.50%. Precision increased from 0.98 to 0.99, recall from 0.92 to
0.97, and F1-score from 0.95 to 0.98. For bacterial spot, the accuracy rose from 97.34% to 98.90%, with precision,
recall, and F1-score all reaching 0.99 with TPDCNN-CGAN compared to 0.97-0.99 ranges in TPDCNN. Classes
like late blight mold already performed strongly in TPDCNN, reaching 98.6% accuracy, 0.99 precision and recall,
and 0.99 F1-score, which slightly improved to 99.18% accuracy in TPDCNN-CGAN, maintaining the same high
precision, recall, and F1-score. However, the spider mite class shows a dramatic jump in F1-score from 0.81 in
TPDCNN to 0.99 in TPDCNN-CGAN, with accuracy rising from 97.22% to 98.21%, precision from 0.98 to 0.99, and
recall from 0.97 to 0.98, indicating CGAN'’s effectiveness at handling previously challenging cases. Overall, the
average performance across all 10 classes shows TPDCNN-CGAN outperforms TPDCNN in every metric: accuracy

improves from 96.04% to 98.11%, precision from 0.97 to 0.98, recall from 0.96 to 0.98, and F1-score from 0.95 to 0.98.

Table 2. Performance of the proposed model for 10-class tomato leaf disease detection.

. TPDCNN TPDCNN-CGAN
Leaf disease — —
Acc Recall Precision F1-score Acc | Recall | Precision F1-score

Healthy 98.74 0.99 0.98 0.98 98.74 | 0.99 0.98 0.98
Mosaic virus 88.39 0.88 0.89 0.89 96.43 0.96 0.92 0.94
Curl virus 99.58 1.00 0.97 0.98 99.58 1.00 0.99 0.99
Spider mite 97.22 0.97 0.98 0.80 98.21 0.98 0.99 0.99
Septoria leaf spot 96.99 0.97 0.98 0.98 98.49 0.98 0.99 0.99
Early blight 94.00 | 0.94 0.97 0.95 97.00 | 0.97 0.97 0.97
Leaf mold 91.96 0.92 0.98 0.95 96.50 0.97 0.99 0.98
Target spot 97.62 0.98 0.96 0.97 98.10 0.98 0.99 0.99
Late Blight mold 98.60 | 0.99 0.99 0.99 99.13 | 0.99 0.99 0.99
Bacterial spot 97.34 0.97 0.97 0.97 98.90 0.99 0.99 0.99
Average 96.04 0.96 0.97 0.95 98.11 0.98 0.98 0.98

Table 2 presents the class-wise performance of the proposed TPDCNN and TPDCNN-CGAN models for 10-
class tomato leaf disease detection. It shows that TPDCNN-CGAN consistently improves accuracy, recall, precision,
and F1-score across all disease categories, particularly for Mosaic Virus, Leaf Mold, and Bacterial Spot, where

synthetic data generation helps overcome class imbalance.
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Figure 4. Performance of proposed TPDCNN for 10-class PLDD.

When trained on the augmented dataset (with 2450 samples per class) using data augmentation through C-GAN,
the proposed model achieves higher accuracy for the curl virus (99.58%), late blight mold (99.18%), bacterial spot
(98.90%), and healthy samples (98.74%). The data augmentation using C-GAN helps address the class imbalance
problem and improves the accuracy for the mosaic virus (96.43%) and leaf mold (96.50%) diseases. The proposed
TPDCNN-CGAN model achieves a 2.15% improvement in disease detection accuracy over the TPDCNN model
without data augmentation for the 10-class disease detection task. The F1-score provides a balanced evaluation of the

performance of the 10-class disease detection.

4.2. Performance Evaluation for 6-Class PLDD

Figure 5 presents the outcomes of TPDCNN for the 6-class PLDD, including healthy, viral, bacterial, fungal,
mold, and mite diseases. For the Healthy class, TPDCNN achieved 95.1% accuracy, while TPDCNN-CGAN
improved it to 97.06%, with precision and recall reaching 1.0 and 0.97, respectively. In the Viral class, the accuracy
rose from 98.2% to 99.71%, with the TPDCNN-CGAN attaining a perfect recall and F1-score of 1.0, compared to
0.98 with TPDCNN. For the Fungal class, TPDCNN-CGAN achieved nearly perfect scores with 99.89% accuracy,
1.0 precision, recall, and F1-score, surpassing TPDCNN’s 99.59% accuracy and a slightly lower F1-score (0.99).
Similarly, for the Bacterial class, accuracy improved from 98.43% to 99.27%, with precision and recall increasing from
0.97-0.98 to 0.99 each. The Mold class also showed a gain from 98% to 99.1% accuracy, and the F'1-score improved
from 0.97 to 0.99. Finally, in the Mite class, TPDCNN-CGAN recorded 99.27% accuracy compared to 98.41% for
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TPDCNN, with higher precision, recall, and F1-score (0.99 vs. 0.98). On average, TPDCNN achieved 97.96%

accuracy, 0.98 precision, 0.98 recall, and 0.98 F1-score. In comparison, TPDCNN-CGAN improved these values to

99.05%, 0.99, 0.99, and 0.99, respectively, clearly highlighting the superior generalization and robustness of the

CGAN-enhanced approach in tomato leaf disease classification.
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Figure 5. Performance of proposed TPDCNN for 6-class PLDD.

The performance of the suggested TPDCNN and TPDCNN-CGAN models for 6-class tomato leaf disease
detection is shown in Table 3. The findings demonstrate that TPDCNN-CGAN consistently outperforms all other

categories in terms of accuracy, recall, precision, and F1-score, with considerable gains for the Healthy, Mold, and

Mite classes.

Table 8. Performance of the proposed model for 6-class tomato leat disease detection

. TPDCNN TPDCNN-CGAN
Leaf Disease — 0
Acc Recall Precision F1-score Acc Recall Precision F1-score
Healthy 95.10 0.95 0.99 0.97 97.06 0.97 1.00 0.98
Fungal 99.59 1.00 0.99 0.99 99.89 1.00 1.00 1.00
Viral 98.20 0.98 0.99 0.98 99.71 1.00 0.99 1.00
Mold 98.00 0.98 0.96 0.97 99.10 0.99 0.99 0.99
Mite 98.41 0.98 0.98 0.98 99.27 0.99 0.99 0.99
Bacterial 98.43 0.98 0.97 0.98 99.27 0.99 0.99 0.99
Average 97.96 0.98 0.98 0.98 99.05 0.99 0.99 0.99
183

© 2026 AESS Publications. All Rights Reserved.



Journal of Asian Scientific Research, 2026, 16(1): 174-189

4.8. Performance Evaluation for 2-Class PLDD

The performance of the suggested model for two-class tomato leaf disease detection utilizing both the original
TPDCNN and the improved TPDCNN-CGAN frameworks is shown in Table 4. The results demonstrate the efficacy
of synthetic data creation in enhancing class balance and overall classification reliability, with TPDCNN-CGAN

achieving higher accuracy, recall, precision, and F1-score for both the Healthy and Disease classes.

Table 4. Performance of the proposed model for 2-class tomato leaf disease detection.

TPDCNN TPDCNN-CGAN (Healthy-2450,
Leaf disease Healthy-1591, Disease-14423) Disease-22050)
Acc Recall Precision F1-score Acc Recall Precision F1-score
Healthy 97.00 0.97 0.97 0.97 98.49 0.98 0.99 0.99
Disease 98.74 0.99 0.98 0.98 99.79 1.00 0.99 0.99
Average 97.87 0.98 0.97 0.98 99.14 0.99 0.99 0.99

The performance of the proposed TPDCNN was further validated for two-class disease detection, consisting of
healthy and diseased classes as given in Figure 6. For the Healthy class, TPDCNN achieves an accuracy of 97% with
precision, recall, and F1-score all at 0.97, whereas TPDCNN-CGAN raises the accuracy to 98.49%, precision to 0.99,
recall to 0.98, and F1-score to 0.99. This shows a notable gain in reliability for detecting healthy leaves. Similarly, for
the Disease class, TPDCNN already performs well with 98.74% accuracy, 0.98 precision, 0.99 recall, and 0.98 F1-
score. However, TPDCNN-CGAN further improves accuracy to 99.79%, precision and F1-score to 0.99, and achieves
a perfect 1.00 recall, indicating it identifies diseased leaves almost flawlessly. Overall, TPDCNN yields 97.87%
accuracy, 0.97 precision, 0.98 recall, and 0.98 F1-score. These values rise to 99.14% accuracy, 0.99 precision, 0.99

recall, and 0.99 F1-score with TPDCNN-CGAN, reflecting a consistent and substantial improvement.
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Figure 6. Performance of the proposed TPDCNN for 2-class PLDD.
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4.4. Experimental Results on Real-Time Dataset

We have evaluated the effectiveness of the TPDCNN for the 2-class classification (healthy and diseased) of
tomato leaf disease detection, considering 2000 images per class. The TPDCNN achieves an overall accuracy of
97.50% for TPDCNN+GAN and 95.405% for TPDCNN. It provides reliable and efficient results for real-time images
for a system trained using the PlantVillage dataset.

4.5. Discussions on Overall Results

The performance of the TPDCNN model was assessed by varying the number of parallel DCNN layers in the
architecture as given in Figure 7. Specifically, the outcomes were evaluated for one, two, and three parallel DCNN
layers. For the 2-class model, accuracy steadily rises from 84.5% to 97.8% with increasing parallel layers in CPDCNN,
while C-GAN+CPDCNN consistently outperforms it, reaching 98.74% at four layers. IFor the more challenging 6-
class model, CPDCNN improves from 82.3% to 90.5% as layers increase, but the C-GAN-enhanced version jumps
from 88.2% to 96.4%, a larger gain at every depth. Similarly, in the 9-class model, CPDCNN progresses from 89.3%
to 96.4%, whereas C-GAN+CPDCNN achieves 92.7% to 98.41%, consistently higher.

ETPDCNN  mC-GAN+TPDCNN

Accuracy

CPDCNN parallel layers

Figure 7. Accuracy of the proposed model for difterent parallel arms in TPDCNN (2, 6, and 9-class classification).

The training time and recognition time for the TPDCNN, as well as the implementation of the preceding
methods, are shown in Table 5. The TPDCNN had significantly fewer trainable parameters compared to other
methods. It only required 122,882, 155,654, and 188,426 trainable parameters for 2-class, 6-class, and 10-class tomato
PLDD, respectively. However, the ResNet and DenseNet121 require 11.8 million and 8 million trainable parameters,
resulting in higher system complexity. This reduction in trainable parameters contributed to minimizing the
computational complexity of the network. It also increased the feasibility of implementing the proposed system on
portable, standalone devices in the future, as it requires fewer resources. In comparison to ToLeD (3645 seconds),
ResNet (3276 seconds), and C-GAN + DenseNet121 (2867 seconds), the lightweight TPDCNN proposed here takes
a shorter training time, approximately 2564 seconds. The average recognition time for the TPDCNN is 0.345
seconds, much faster than C-GAN + DenseNet121, which takes 0.765 seconds, ResNet, which takes 0.867 seconds,
and ToLeD, which takes 1.2 seconds.
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Table 5. Training and recognition times of the systems for 10-class PLDD.

Method Training time Recognition time Trainable parameters
TolLeD [15] 8645 sec 1.2 sec -

ResNet [167] 3276 sec 0.867 sec ~11.8 M
C-GAN + DenseNet121 [17] 2867 sec 0.765 sec ~8 M
Suggested TPDCNN 2564 sec 0.34:5 sec 188426

The effectiveness of the proposed TPDCNN-based PLDD system was compared to traditional state-of-the-art
methods for PLDD, as presented in Table 6. The TPDCNN achieved superior results, with an accuracy of 99.14%
and 97.87% for 2-class disease detection with and without data augmentation, respectively. In comparison, ResNet
achieved an accuracy of 97.28% for the tomato class [167]. For 10-class disease detection, the TPDCNN achieved an
accuracy of 98.11% with data augmentation and 96.04% without data augmentation. It also achieved accuracies of
99.05% and 97.96% for the 6-class PLDD. The proposed TPDCNN model outperformed other methods, showing a
7.57% improvement over ToLeD [157] and a 1.02% improvement over DenseNet121 17 for 10-class tomato PLDD.
The parallel architecture of TPDCNN facilitated better connectivity between local and global features in plant leaf

images, enhancing the discriminative capability of detecting defective areas on the leaf surface.

Table 6. Performance comparison with traditional techniques (PlantVillage - Tomato).

Author and year Method Number of Performance
classes F1-score | Precision | Recall | Accuracy
Moussafir, et al. [157] | ToLeD 10 0.91 0.90 0.92 91.20%
Adhikari, et al. [16] ResNet with SGD 2 - - - 97.28%
optimization
Karthik, et al. [17] C-GAN + 5 0.99 0.99 0.99 99.51%
DenseNet121 7 0.98 0.98 0.99 98.65%
10 0.97 0.97 0.97 97.11%
Proposed method TPDCNN 2 0.98 0.97 0.98 97.87%
6 0.98 0.98 0.98 97.96%
10 0.95 0.97 0.96 96.04%
TPDCNN-CGAN 2 0.99 0.99 0.99 99.14%
6 0.99 0.99 0.99 99.05%
10 0.98 0.98 0.98 98.11%

5. CONCLUSIONS AND FUTURE SCOPE

This article investigates a lightweight parallel DCNN approach for detecting tomato plant leaf diseases,
enhancing feature distinctiveness and addressing the problem of filter size selection. The proposed model
demonstrates the capability to detect even minor diseases on leaf samples. Additionally, a C-GAN is effectively
implemented for synthetic image generation, which helps mitigate the class imbalance problem resulting from the
uneven distribution of samples in the training dataset. The proposed TPDCNN achieves high accuracies of 99.14%,
99.05%, and 98.11% for 2-class, 6-class, and 10-class disease detection, respectively, using the Tomato PlantVillage
dataset. Furthermore, the TPDCNN-CGAN model improves disease detection accuracy by 2.15% compared to the
TPDCNN without data augmentation for the 10-class disease detection task. These results indicate that the proposed
model outperforms traditional state-of-the-art methods for tomato PLDD.

The "explainability and interpretability” of the TPDCNN are limited due to the black-box nature of the DL
framework. The effectiveness is challenging due to extensive hyperparameter tuning of the TPDCNN. In the future,
the "Explainability and Interpretability" of the system can be improved by inculcating explainable AI (XAI) to

enhance system trust.
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The TPDCNN performance can be improved by optimizing the algorithm's hyperparameters. Additionally, the

proposed network can be extended by increasing its depth and applied to detect leaf diseases in multiple plant species,

offering a versatile solution for plant disease detection.
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