
Asian Journal of Economic Modelling, 2017, 5(1): 11-22 

 

 
11 

† Corresponding author 

DOI: 10.18488/journal.8/2017.5.1/8.1.11.22 

ISSN(e): 2312-3656/ISSN(p): 2313-2884 

© 2017 AESS Publications. All Rights Reserved. 

 

COMPARISON OF THE LEE-CARTER AND ARCH IN MODELLING AND 
FORECASTING MORTALITY IN ZIMBABWE  
 

Rodney Taruvinga1 --- Walter Gachira2† --- Washington Chiwanza3 --- Dingilizwe Jacob Nkomo4 

1Researcher, Harare Institute of Technology, Harare 
2,3,4Lecturer,Harare Institute of Technology, Harare 

 

ABSTRACT 

This paper aims to determine which model best fits the mortality profile of Zimbabwe. The models that being 

compared were the Lee-Carter and ARCH and the period under review was from 1983-2004 using mortality rates of 

five years age interval. The parameters of the Lee-Carter model were estimated using singular value decomposition. 

The box Jenkins approach was used to determine the order of lags for the ARIMA. An ARIMA (1, 1, 1) was used to 

forecast the overall mortality levels. To determine which model best fit the mortality profile of Zimbabwe goodness of 

fit using the Kolmogorov-Simonov and root mean square error was used. The result suggested that the Lee-Carter 

model provided a better fit as compared to ARCH. However both models failed to fit for ages between 50-59 years. 

Both models were used to forecast, but selecting the one that had the best fit of the two models on a particular age 

group interval for the period 2005-2014.This paper concludes that generally the Lee-Carter model provided a better 

fit for the mortality profile of Zimbabwe. 
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Contribution/ Originality 

The study contributes to the existing literature on the best methods of modeling and forecasting mortality, 

interestingly with focus Zimbabwe, a developing economy. The study is the first of its kind in Zimbabwe on this 

branch of knowledge. 

 

1. INTRODUCTION 

The study of mortality is of utmost importance as it provides an insight of the health of individuals not only in 

Zimbabwe but also indicates the social well-being of individuals across the globe. According to the  World Health 

Organisation (2009) the leading global risks for mortality in the world are high blood pressure (responsible for 13% 

of deaths globally), tobacco use (9%), high blood glucose (6%), physical inactivity (6%), and overweight and obesity 

(5%). These risks are responsible for raising the risk of chronic diseases such as heart disease, diabetes and cancers. 

They affect countries across all income groups hence the study of mortality not only is important for health and life 

insurance but also for health ministries and non-governmental organization as well. 
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From financial point of view, considering today’s competitive term life insurance market there is little 

opportunity to arrive at competitive premiums without some type of mortality improvement built into the pricing. It is 

noted that a small change in the mortality forecast improvement can have a disproportionately large impact on pricing 

and profitability. In researches that were conducted in USA a one percent incremental increase in the mortality 

forecasts improvement can reduce the present value of claims from a block of term life business by up to nine 

percent. It can be noted that that for pricing actuaries their concern is of having a better forecasts of mortality which 

will aid them ascertaining the premium that have to be paid that will cuter for unexpected losses in the future.  

Building a bona fide mortality management solution are not easy Collins et al. (2011) but the value-creating 

potential is too big to ignore. In the short run, a mortality management solution improves operational efficiencies and 

mortality results. In the long run, it captures data that provide essential insights for building competitive products and 

meeting evolving regulatory demands and to have a bona fide management system there is a need to develop a robust 

model that give better  forecasts of mortality and benefits of profitability and pricing is better attained.  

The better prediction of  mortality is essential because it is these uncertainty that the model would be used to 

come up with better mitigations of the basis risk that that arise from mortality and longevity risk on pension 

expenditure and the impact on social security reforms . It is essential to have better understanding of mortality 

forecasts as from these forecast we come up with longevity risk and this create a platform for other sophisticated 

derivative instruments like longevity derivatives and bonds to be introduced. 

One of the most commonly used models to forecast age-specific mortality rates is based on the Lee and Carter 

(1992) model. The model has attracted a lot of attention and has become a benchmark for mortality modelling and life 

table predictions although the model has also been subject to criticism. Even though the model was mainly intended 

to describe the statistical variation in all-cause mortality in the United States and similar developed countries, the 

model is now widely used to predict all-cause and cause specific mortality for a large range of developed and less 

developed countries. 

 

2.  LITERATURE REVIEW 

In actuarial science, force of mortality represents the instantaneous rate of mortality at a certain age measured on 

an annualized basis the force of mortality is assumed to follow various distribution from gompertz, uniform, 

balduccimakeham and exponential to mention a few. It is suggested that the force of mortality can be calculated as 

derivative of the underlying distribution divided by the underlying distribution. 

 

Where  the force of mortality is is the derivative of the underling distribution and is the underling 

distribution. 

Gompertz (1825) after observing a law of geometrical progression (i.e. exponential rise) in death rates based on 

19th century people in England, Sweden, and France between ages 20 and 60, came up with a law of modelling 

mortality and he suggested that the force of mortality. In terms of actuarial notation, this formula can be expressed as:  

 

 

Where B and Care model parameters they should be greater than zero, x > 0 is the age, and is the force of 

mortality at age x. Gompertz Law is an exponential function, and it is regularly consider a reasonable assumption for 

middle ages and older ages. If the mortality rates of the elderly age is assumed to follow  the Gompertz law and the 
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estimation of the parameters B and C is not that complex, then the mortality projection would be more straightforward 

and rather than using regular non-parametric methods for forecasting. This is one of the main reasons why a 

parametric approach has been used overwhelmingly in mortality projections, especially for elderly mortality rates. 

However the Gompertz law has received much attention, there are still no standard methods to test if a set of yearly 

age-specific mortality data satisfies this law. 

The Uniform or De Moivre's Model is another parametric model that could be used to model mortality (Finan, 

2011). The force of mortality can be found by; 

 

Where  the maximum or terminal age and is the age at death random variable. 

The Modified Gompertz Model or The Makeham’s Model this was proposed. Makeham’s is a refinement to the 

Gompertz law were he suggested that a positive  constant was to be added to the Gompertz law to come up with an 

model below for modelling force of mortality: 

 

Where  

 

The Weibull law of mortality is defined by the hazard function 

 

Where > 0, > 0,  ≥ 0. That is, the death rate is proportional to a power of age. Notice that the exponential 

model is a special case of Weibull model where n = 0. 

Form the reseach by Eglė et al. (2012) they employed lee-carter mortality forecasting they comparing the 

suitability of the Lee–Carter model for different countries namely France Lithuania and Belarus and their period of 

study was from 1970-2005 they used the age specific mortality rates, they obtained that the model almost accurately 

describes and predicts mortality for France. Only short-term (1–2 years) forecasts for the Belarusian and Lithuanian 

mortality are accurate, while the accuracy of longer-term (4–5 years) forecasts is lower, especially for men. From 

these results, they concluded that the Lee–Carter method is most suitable for populations with a clear upward or 

downward mortality trend over time. They also suggested that for further improvement in results they should be more 

researches done using the lee-carter extensions. 

According to Emilio (2012) in their research on measuring the Impact of Longevity Risk on Pension Systems: 

The Case of Italy, they wanted to project the mortality using the lee-carter model. They fitted the model to Italian 

mortality rates for the period 1965-1999 and generating forecasts for the subsequent nine years, up to 2008. However, 

they made extensions to their model by considering the cohorts ranging from 20 to 110 years. In their findings they 

found that the model performs very well in explaining mortality from 40 to 100 years, however the power of the lee 

carter model significantly drops as the observations on mortality rates become more volatile at very old ages. They 

concluded that the overall performance of the lee-carter model was overall satisfactory, as the realized ex-post data 

almost never violate the 95 per cent confidence bounds. 

Giacometti et al. (2009) compared the Lee-Carter model and AR-ARCH model for forecasting mortality. They 

obtained data of mortalities from 1960-2006 for the ages between 40-90 of Italian and they fitted the data on the lee-

carter and ARCH(1) they first fitted the data from 1960-2004 on the two models and they forecasted the mortalities 
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from 2004-2006 they then used the Kolmogorov Smirnov to compare which model then provided the best fit and they 

found that the ARCH(1) model with t-student innovations provides the best fit among the models investigated 

because it is able to capture the non-Gaussian behaviour of the dynamics associated with the time and age processes. 

Moreover, this model is capable of enlarging the mortality matrix in two dimensions time and age. From the literature 

review it can be noted that lee-carter model is one of the model used in modelling and forecasting of mortality rates in 

various countries however other researcher used the lee-carter extension to model mortality rates. 

 

3. RESEARCH METHODOLOGY 

First the collected data will implemented in both the Lee-Carter and ARCH and parameters for both models will 

be obtained. Then forecasts for both models will be projected, for the Lee-Carter model projections will be obtained 

using ARIMA then finally the forecasted mortality rates will be compared to actual mortality rates. A number of test 

will be conducted actual mortality rate against the forecasted rates to determine the weather the model fit the actual 

data using RSME (root squared mean error) and finally K-S (Kolmogorov-Simonov) test  then the results from the 

two test of the model will be compared to determine which model can be used in modeling and forecasting mortality. 

The research targeted central mortality rate Zimbabwe the age specific mortality rates from ages 0-85 years the source 

of the data was obtained from ZIMSTATS and ministry of health, the sampling period was from 1983 to 2014. The 

software Matlab 8.2 was used for analysis. 

 

3.1. Central Mortality Rates 
1
Mortality is the death rate for age x in year t, i.e. the ratio between the total number of deathsin the population of 

age x in year t and the total population of age x in year t and the mortality is calculated as  

 

Where D: is the number of deaths in particular age at a particular time  

              N: is the total population of the age being investigated at particular time. 

 

3.2. The Lee-Carter Model 

Lee and Carter (1992) the model is as follow: 

=α+βk+ε 

Under the condition that  and  

Where:mx:tis the matrix of the central death rates at age x  in years t 

 

=  

The ε represents the deviation of the model from the observed log-central death rates and is expected to be 

Gaussian ε~N(0: σ
2
). The parameter α is the estimates, are given by the averages of the force of mortality over the 

time period 

                                                             
1EgleIgnataviciute, Rasa Mikalauskaite-Arminiene, Jonas Šiaulys LEE–CARTER MORTALITY FORECASTING Lithuanian Journal of Statistics November 2012 
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The βmeasures the response at age x to change in the overall level of mortality over time, krepresents the overall 

level of mortality in year t 

The constants β and k are uniquely estimated using singular value decomposition (SDV) 

 

 

3.3. Singular Value Decomposition 

Lee and Carter used the singular value decomposition to estimate the parameters by first subtracting the average 

of force of mortality from the log of mortality. 

-α=  

Therefore 

SVD ( ) =  

Where { > >…………. }are order of the singular values of , and are left and right singular vectors. 

 

ARIMA 

The estimated k is then modelled and forecasted using the ARIMA in most G7 countries they used of (0;1;0) but 

however the most suitable way of determining the  order of lags is though using the box Jenkins approach but first the 

order of (0;1;0) which lee and carter used in forecasting in 1992 which is as follows. 

=  

Where the drift parameter and is the error term. 

 

3.4. Box Jenkins Approach 

The box Jenkins approach was used to determine the order of legs for the ARIMA model the process shall be 

from the carried out in the following as follows: 

1. Establish the stationarity of kappa time series. If kappa series is not stationary, successively difference your 

series to attain stationarity. 

2. Identify a (stationary) conditional mean model for kappa data. The sample ACF and PACF functions were 

used as selection procedure for the legs. But the failure of the PACF and ACF to give decisive order of legs 

then Akaike or Bayesian information criterion was used using the AIC matrix the combination that gave the 

lowest value was the optimal order of legs for the ARIMA model. 

3. Then parameters for the ARIMA model are estimate.  

4.  Goodness-of-fit test was conducted to checks to ensure the model describes kappa data adequately. 

Residuals were not normally distributed then t innovations were superimposed on the on the model on the 

ARIMA. 

5. The model was used to generate forecasts. 
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ARCH 

We analyse separately rows of the mortality table. As a first step, we analyse the data by rows; that is, we fix a 

specific age x and consider a time series process as follows; 

 

 

 

Where  is identical and independently distributed with mean zero and constant 

 

3.5. Simulation 

Data from 1983 to 2004 is used to obtain parameter of the model the two respective models are used to forecast 

the mortality five years ahead from 2005 to 2014 the forecasted mortalities are then compared with the actual 

mortality rated the to analyze if the forecasted data fit to the actual the following test will be conducted RSME (root 

squared mean error), MAPE (mean absolute percentage error) and finally K-S (Kolmogorov-Simonov) which will be 

used as test of goodness of fit. 

 

RSME 

RSME=  

 

3.6. Kolmogorov-Smirnov 

This test the goodness of fit of the models being investigated namely the lee-carter and the ARCH ascertain which 

model can best model the Zimbabwean mortality using the following test: 

 

The asymptotic distribution of the KS. Statistic is available and the critical value at 95% confidence level is 1.36. 

 

4. DATA ANALYSIS AND RESULTS 

 

Bayesian information criterion matrix 

 MA (1)       MA (2)       MA (3)       MA (4)       

AR (1)    25.2913      25.9575      29.8567      34.5961 

AR (2)    28.3670      28.7214      32.3142      28.7488 

AR (3)    31.7236      27.6958      36.5606      33.3378 

AR (4)    34.9238      29.9061      39.0513      39.1833 

 

From the matrix above it can be noted that the most suitable order of legs for the moving average and the 

autoregressive are 1 and 1 respectively since the correlation between the two legs produced the lowest Bayesian value 

of 25.2913 as compared to other orders. 

According to Lee and Carter (1992) to forecast kappa an ARIMA (0, 1, 0) should be used but may differ with 

different countries because of the mortality profiles.  
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Estimation using Gaussian distribution 

ARIMA (0, 1, 0) Model: 

Conditional Probability Distribution: Gaussian                                                                                               

Parameter Value  Error   t- Statistic 

Constant  -0.301732 0.0626157 -4.8188 

Variance 0.108719 0.0363283 2.9926 

 

Estimation using t distribution 

ARIMA (0, 1, 0) Model: 

Conditional Probability Distribution: t                                                                                                      

Parameter Value  Error   t- Statistic 

Constant  -0.302623         0.0650251        -4.65394 

Variance 0.108789         0.0642196         1.69402 

DoF 200   26965.1           0.00741701 

 

Bayesian information criterion for Gaussian and t distribution respectively 

Bayesian information criterion = 

Gaussian                           t- distribution 

29.0773                            25.9797 

From of the Box Jenkins approach result it can be noted that the ARIMA estimation is suitable for kappa 

estimation at ARIMA (0, 1, 0) and at ARIMA (1, 1, 1) but the most suitable model is the ARIMA (1, 1, 1) since it 

produced the smallest Bayesian value of   25.2913 as compared to that defined by Lee and Carter (1992)with t 

innovations of ARIMA (0, 1, 0) which produced a value of 25.9797. Therefore it can be concluded that the ARIMA 

(1, 1, 1) is the most suitable for estimating and forecasting the kappa (k) in LEE-CARTER model. 

FORECASTED KAPPA (  ) using the ARIMA (1, 1, 1) 

 

Year Kappa 

2005 -4.290214291 

2006 -4.789526953 

2007 -5.252830259 

2008 -5.693648493 

2009 -6.120426529 

2010 -6.538437542 

2011 -6.950974223 

2012 -7.360092604 

2013 -7.767076521 

2014 -8.172727629 

 

FITNESS OF THE MODEL  

 The lee-carter model fit and forecast the mortality rates of Zimbabwe. 

 The lee-carter model does not fit and forecast the mortality rates of Zimbabwe. 
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Lee-Carter Fitness Summary 

LEE-CARTER         

age interval K-S@5% K-S@1% RSME conclusion 

0-4 h=0 h=0 0.000384478 Fit 

5-9 h=0 h=0 0.00001529 Fit 

10-14 h=0 h=0 0.000012602 Fit 

15-19 h=0 h=0 0.000101453 Fit 

20-24 h=0 h=0 0.000094583 Fit 

25-29 h=0 h=0 0.000066852 Fit 

30-34 h=0 h=0 0.000156056 Fit 

35-39 h=0 h=0 0.000181462  Fit 

40-44 h=0 h=0 0.000208938 fit 

45-49 h=0 h=0 0.000172338 fit 

50-54 h=1 h=1 0.000818121 not fit 

55-59 h=1 h=1 0.001669677 not fit 

60-64 h=0 h=0 0.001435886  fit 

65-69 h=0 h=0 0.000820139 fit 

70-74 h=0 h=0 0.001407179 fit 

75-79 h=1 h=1 0.008174681 not fit 

80-84 h=1 h=1 0.016175251 not fit 

 

From the table above, the fitted lee-carter model to the different age groups fitted across fifteen age groups and 

the model failed to fit for 75-70, 80-85, 50-54 and 55-59. In generally the lee-carter model fitted for age groups from 

ages 0-50 of which the most productive gage the model fitted.  

 

Arch Fitness Summary 

AR(1) ARCH(1)         

age interval K-S@5% K-S@1% RSME conclusion 

0-4 h=0 h=0 0 fit 

5-9 h=0 h=0 4.3E-05 fit 

10-14 h=0 h=0 2.2E-05 fit 

15-19 h=0 h=0 4.2E-05 fit 

20-24 h=0 h=0 0.00012 fit 

25-29 h=1 h=1 0.00024 not fit 

30-34 h=1 h=1 0.00032 not fit 

35-39 h=1 h=1 0.00042 not fit 

40-44 h=0 h=0 0.0002 fit 

45-49 h=0 h=0 0.00014 fit 

50-54 h=1 h=0 0.00061 not fit 

55-59 h=1 h=0 0.00121 not fit 

60-64 h=1 h=1 0.00258 not fit 

65-69 h=0 h=0 0.00074 fit 

70-74 h=0 h=0 0.00069 fit 

75-79 h=1 h=0 0.00602 not fit 

80-84 h=1 h=1 0.01281 not fit 

 

From the table above, fitting the ARCH model to the different age groups succeeded across eleven age groups 

and the model failed to fit for 75-80, 80-85, 50-54, 55-59, 30-34 and 35-39. In general the ARCH model fitted for age 

groups more than half age groups under review of which the model failed to forecast for the most productive age 

groups which may be set back to actuarial modelling as the model cannot be used in pricing life insurance products.

mailto:K-S@5%25
mailto:K-S@1%25
mailto:K-S@5%25
mailto:K-S@1%25
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Comparison of the Two Models 

LEE-CARTER         AR(1) ARCH(1)         

age interval K-S@5%  K-S@1%  RSME conclusion age interval K-S@5%  K-S@1%  RSME conclusion 

0-4 h=0 h=0 0.000384478 fit 0-4 h=0 h=0 0 better fit 

5-9 h=0 h=0 0.00001529 better fit 5-9 h=0 h=0 0.0000426 fit 

10-14 h=0 h=0 0.000012602 better fit 10-14 h=0 h=0 0.0000219 fit 

15-19 h=0 h=0 0.000101453 fit 15-19 h=0 h=0 0.0000423 better fit 

20-24 h=0 h=0 0.000094583 better fit 20-24 h=0 h=0 0.0001203 fit 

25-29 h=0 h=0 0.000066852 better fit 25-29 h=1 h=1 0.0002362 not fit 

30-34 h=0 h=0 0.000156056 better fit 30-34 h=1 h=1 0.0003243 not fit 

35-39 h=0 h=0 0.000181462 better fit 35-39 h=1 h=1 0.0004208 not fit 

40-44 h=0 h=0 0.000208938 fit 40-44 h=0 h=0 0.0002009 better fit 

45-49 h=0 h=0 0.000172338 fit 45-49 h=0 h=0 0.0001364 better fit 

50-54 h=1 h=1 0.000818121 not fit 50-54 h=1 h=0 0.0006101 not fit 

55-59 h=1 h=1 0.001669677 not fit 55-59 h=1 h=0 0.0012111 not fit 

60-64 h=0 h=0 0.001435886 better fit 60-64 h=1 h=1 0.0025767 not fit 

65-69 h=0 h=0 0.000820139 fit 65-69 h=0 h=0 0.0007377 better fit 

70-74 h=0 h=0 0.001407179 fit 70-74 h=0 h=0 0.0006915 better fit 

75-79 h=1 h=1 0.008174681 not fit 75-79 h=1 h=0 0.006016 not fit 

80-84 h=1 h=1 0.016175251 not fit 80-84 h=1 h=1 0.0128097 not fit 

                       Key: h=0 accepted that the mode fit, h=1 does not accept that the model fit 

mailto:K-S@5%25
mailto:K-S@1%25
mailto:K-S@5%25
mailto:K-S@1%25
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 Both models best fit and forecast the mortality rates of Zimbabwe. 

 None of the two models best fit and forecast the mortality rates of Zimbabwe.  

 

When comparing the two models the lee-carter model fitted 15 age groups and failed to fit for four age groups 

namely 80-84,75-79, 55-59 and 50-54 however on the other hand the ARCH model was able to fit for eleven age 

groups and failed to fit for 25-39,50-59 and 75-85 of which tis model failed age group that is considered to be 

important age which is 29-39 as they form a large potion  contributors to life insurance.  

Where the two models fitted a particular age group again the lee-carter proved to be more efficient in terms of 

fitting as the model produce relatively lower magnitude of error across seven age groups as compared to ARCH 

which was efficient across six age groups as a result it used when estimating mortality rates for ages that are 

considered to be the most effective for economic growth as it produce lower magnitude of error. 

 

5. CONCLUSION 

When comparing the two models, the Le-Carter generally provided better fitting as compared to the ARCH. The 

lee-carter fitted many age groups under review. The lee-carter produced lower error as compared to the ARCH, 

finally lee-carter fitted for the most productive age groups from 20-50 years. In conclusion both models can only be 

used to forecast from 0-75 years beyond that age both models cannot be used for mortality projections.
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 APPENDIX 

Expected Future Mortality Rates 

AGE/YR YR 2015 YR 2016 YR 2017 YR 2018 YR 2019 YR 2020 YR 2021 YR 2022 YR 2023 YR 2024 model 

0-4 0.00112 0.00108 0.00104 0.00100 0.00096 0.00093 0.00090 0.00087 0.00084 0.00082 ARCH 

5-9 0.00011 0.00011 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00007 L-C 

10-14 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 0.00011 0.00010 0.00010 0.00010 L-C 

15-19 0.00056 0.00054 0.00052 0.00050 0.00049 0.00047 0.00045 0.00044 0.00042 0.00041 ARCH 

20-24 0.00082 0.00080 0.00078 0.00076 0.00075 0.00073 0.00071 0.00069 0.00068 0.00066 L-C 

25-29 0.00081 0.00080 0.00078 0.00077 0.00075 0.00074 0.00072 0.00071 0.00069 0.00068 L-C 

30-34 0.00102 0.00101 0.00099 0.00097 0.00095 0.00094 0.00092 0.00090 0.00089 0.00087 L-C 

35-39 0.00153 0.00151 0.00149 0.00147 0.00145 0.00142 0.00140 0.00138 0.00136 0.00134 L-C 

40-44 0.00227 0.00222 0.00217 0.00212 0.00206 0.00201 0.00196 0.00191 0.00185 0.00180 ARCH 

45-49 0.00381 0.00374 0.00366 0.00359 0.00351 0.00344 0.00336 0.00329 0.00322 0.00314 ARCH 

50-54 0.00610 0.00602 0.00593 0.00585 0.00576 0.00568 0.00559 0.00551 0.00542 0.00534 L-C 

55-59 0.00962 0.00949 0.00936 0.00922 0.00908 0.00894 0.00880 0.00866 0.00853 0.00839 L-C 

60-64 0.01525 0.01503 0.01480 0.01457 0.01433 0.01410 0.01387 0.01363 0.01341 0.01318 L-C 

65-69 0.02386 0.02348 0.02307 0.02266 0.02225 0.02184 0.02143 0.02103 0.02063 0.02024 ARCH 

70-74 0.03731 0.03665 0.03596 0.03525 0.03455 0.03385 0.03316 0.03247 0.03180 0.03114 ARCH 

75-79 0.06164 0.06064 0.05959 0.05852 0.05745 0.05638 0.05532 0.05427 0.05325 0.05223 L-C 

80-84 0.10403 0.10264 0.10119 0.09970 0.09821 0.09671 0.09523 0.09376 0.09231 0.09087 L-C 
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